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We use a generalization of the Liouville formula to state a necessary condition 

under which the zero solution of a system of nonlinear differential equations has 
no attraction property with respect to any of the variables. In particular, from 
the basic theorem it follows that the stable unperturkd motion of a general (non- 
stationary) Hamiltonian system cannot be attractive with respect to any of the 
generalized coordinates and impulses. Properties of stability of the equilibrium 
position of a mathematical pendulum of variable length are investigated as an 

example. 

1, kt the following system of differential equations of perturbed motion be given: 

X’ = x (t, x) (X (t, 0) = 0) (1.1) 

x=(x1, 4, . ..( z,)*ER”, [ x 11 = (q;’ + h* + . . . + S,‘)‘~~ 

The vector function X (t, x) is defined and continuous together with its first order par- 
tial derivatives in xi (i = 1, 2, . . ., n) on the set r = {(t, x) : t > 0, 1 x 1 < 
R} (0 < H < 00) and the solutions x (t; t,, x0) are defined for all t > to pro- 
vided that the initial values x,, = x (to; t,, x0, are sufficiently small in the norm. 

Definition. The unperturbed motion x = 0 shall be called attractive with re- 
spect to the variable zj (1 < j < n), if for every t, there exists 6 (to) > 0 such 

that 1) x0 (1 < 6 implies 
limt,, zj (t; to, x0) = 0 (1.2) 

An unperturbed motion attractive with respect to all variables q, 5, . . ., 5, shall 
simply be called an attractive one. 

Using the above terminology we can say that an unperturbed motion is asymptotically 
x1-stable [l] if it is zj-stable and attractive with respect to zj. Below we shall use the 

following notation : 

s (r) = {x : (1 x n < r} (0 < r E R) 

2 (t; to, F) = {x (t; t,, XJ : xg E F) 

2, The mapping S (f) --t R" defined by the formula 

(F c R”) 
x0 + x (t; t,, x0) is, for any 

fixed t, t, (0 < t, 6 t) , a diffeomorphism the Jacobian of which satisfies rhe follow- 
ing differential equation [Z, 33: 

when t > to. This yields the relation 

223 



22.4 L.Hatvdnyl 

(2.1) 

which represents a generalization of the Liouville formula for the systems of nonlinear 
equations. 

Theorem. Assume that a neighborhood of the coordinate origin exists such that all 
solutions of the system (1.1) originating in this neighborhood are uniformly bounded, i. e. 
numbers I > 0 and L > 0 can be found such that 

If 
2 0; 0, s (1)) c s (L) (t > 0) 

lim ~upt+~ min 
s (2 

n ax, (s, x) 
t?Xi 

:~~x~~,<qds>- c%J 

0 I=1 

(2.2) 

(2.3) 

then the zero solution of the system (1.1) has no attractive property with respect to any 
of the variables xi:,, ~a, . . ., z,, or, more accurately, the Lebesgue measures in [E,] 
of the sets 

&={xo:llxoII<k 1 imt_, Xi (t; 0, X0) = 0) 

(i = 1, 2, . . ., n) are equal to zero. 

Proof , By virtue of the condition (2.3) and relation (2.1) a sequence 0 < tl < 
. . . <tt\(... and a constant C exist such that tk --t 00 when k --f oo and the 

inequality 
p [Z (t,; 0, F)] = .I’ . . . j dz, . . . ds, = (2.4) 

x($; o, F) 

s s 
. . . J (x0; t,, 0) dq,, . . . ds,,>exp[C]p[F] (k=il 2v...) 

F 

holds for any open measurable set F C 8 (1). The sets 

H; = 
I 
xo:IIxo~~<Z, )s& O,xo)I<~ nPa ma++l} 

are open for any fixed i 

(m, k=1,2,. . .) 

(1 < i < n) (see [2]), therefore the set 

Ei= fi(E fi Hk) 
ki j=lrn=j 

is Lebesgue measurable. 
Let us assume that the theorem is incorrect, i.e. that there exists j (1 < j < n) 

such that p [El] > 0. Then using a theorem due to D. F. Egorov [4] we can find a mea- 
surable set E* C El the measure of which satisfies the inequality lo [E*] > lo [EjI / 2 
and on which zj (t; 0, x0) + 0 uniformly in x0 when t + 00 , i.e. for any e 2 0 , 
T (8) can be found such that t > T (8) and x0 E E* implies the inclusion 

x (t; 0, xo) E J!f (8) (2.5) 

M (4 = s (L) n {Y: I Yl I < 4 
Since trc * 00 , a natural number k (E) can be found such that 

us introduce the notation 
t,(,) > T (E). Let 

F (E) = 2 (0; tk(E), h’f (8)) n s (I) 

By virtue of (2.5) we have E* C F (E), therefore p IF (e)] > lo [Ejl / 2 . Using 
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now (2,4), we obtain the following estimate: 

(2.6) 

On the other hand, we have the obvious relation 

lim,,+p LM (e)l = 0 

which contradicts the estimate (2.6) thus proving the theorem, 
C or o 11 a I y 1. If the zero solution of the system (1.1) is stable and the inequality 

(2.3) holds for sufficiently small L > 0, then the zero solution of (1.1) has no attraction 
property towards any of the variables xi; to express it more accurately, l.r [Et] = 

0 (i = 1, 2, . . ., n). 
Now let the following arbitrary (nonconservative) Hamiltonian system be given 

q.* = aH(t, q, P) 
I aPi 

, pi’ = _ aH(;qql P) (i=l,2,..., n) (2.7) 
i 

and let us assume that the Hamiltonian function H (t, q, p): [0, oo) x R”x R “-N R 
is continuous together with its second partial derivatives in qi and pI. Let the system 
(2.7) have a solution q = p = 0 which we shall call the position of equilibrium. 

Corollary 2. If a neighborhood of the position of equilibrium q = p = 0 of the 

system (2.7) exists in the 2n-dimensional space of the variables q, P such that allsolu- 
tions originating in this neighborhood are uniformly bounded,i.e. numbers I > 0 and 

L > 0 exist such that 11 q, /I2 -I- 11 p. iI2 < Z2 implies the inequality 

/I q cc 09 qo7 POV + IIP (C 09 qo, PO)/12 < Ls (2. S) 
for all t > 0 (in particular when this position of equilibrium q = p = 0 is stable) , 
then the position of equilibrium has no attraction property with respect to any of the va- 

riables pi, Pi, or more accurately, the Lebesgue measures of the sets 

Qi 0 i = pi (so, PO) E Ran : 1 q,, u” + 

IIP0)J2 < z2, ljm qi 
0 t+ca Pi 

(t; 0, q,, po) = 0 

(i = 1, 2, . . ., n) are all equal to zero, 

Note. The equation 
x” + a (t)x = 0 (t > 0, z E fo (2.9) 

shows that the condition (2.8) in Corollary 2 is essential, Setting q = z and p = z’, we 

can write (2.9) in the form of the Hamiltonfan system (2.7) with the function H (r, q, 
P) = (a (t) 9’ -k pe) / 2. The solution I = I’ = 0 of (2.9) cannot be attractive irrespec- 
tive of what the function a (t) is. On the other hand, the problem of the conditions un- 

der which all solutions of (2.9) tend to zero as t - 00 , or setting it differently, when the 
solution t = z’ = 0 of (2.9) is attractive (in the whole) with respect to the coordinate 
5, has been a subject of study for a long time, A number of conditions guaranteeing this 

property are known (see Sect, 5.5 of [5]). It follows that the rejection of the condition 
(2.8) invalidates Corollary 2. 

3. As au example, we consider the motion of a pendulum consisting of a material 
point suspended by a thread the length of which varies in accordance with an arbitrarily 
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stated law I = 1 (t) (I (t) > 1, > 0). We denote by 8 
with the vertical. In this case the Lagrange equation 

the angle formed by the thread 
has the form 

(la (tP*)‘+ gz (t) sin 8 = 0 (- n/2 < 0 < n/2) (3.1) 

Consider the “normalized energy’ 

v = v (1,8, e.) = 9 (kY)Z + 2 (1 - cos (3) (3.2) 

By virtue of Eq. (3.1) we can write the following estimate for the derivative V’ : 

v*(t,e,e*)= - $ r (t) (ey < I]+# 1 (t)]_ v p, 8, e.1 (3.3) 
Assume that 

L = 5 [(In I (t))‘]_ dt < 00 (3.4) 
0 

Then any one solution 3 (t) of (3. 1) satisfies the inequality 

v (t) = v (t, e (t), 8’ 0)) Q 2) (to) exp [3Ll (3.5) 

Since (1 - cos 6) / @ -_) V2 as 8 --j 0, for any (I > 0 and to >, 0, there exist k > 0 and 
K (k,) such that 

v (t, 8, e-j h k 032 + (em 

v (to, e, e*) G K (b) (e2 + w7 
(t>o,e*EIi, oeIekcd2-4 

If e > 0 and k 
‘02 + (es)2 < e K (to) exp [ 3L] 

then by virtue of (3.5) we have the inequality 

]e (2; to, e,, e,y + [em (t; to, eo, e,*)i2 < e u > toI 

i.e. the condition (3.4) entails the stability of the unperturbed motion 8 = 8’ = 0. 

We note that the condition (3.4) obviously holds when the function z (t) (1 (t) > IO > 0) 

increases or decreases, at sufficiently large values of t. If an unbounded sequence of the 
time instances f, < sI < . . . < rk < sh < . . . is such that the function z (t) decreases 
on the intervals [Q, sk] and increases on the intervals [sk, Q+~] (k = 1, 2, . . .), then 
the condition (3.4) is equivalent to the inequality 

fi (z O-,)/z (Q) < 00 
k=l 

Let us find for what function 1 (t) the unperturbed motion 8 = 8’ = 0 is attractive 
with respect to the angle 8. A simple computation shows that when the system is equi- 
valent to (3, l), the condition (2.3) is equivalent to the inequality lim inf,,,Z (t) < 00. 
using Corollary 1 we find that if the function I (t) is bounded and satisfies the condition 
(3.4). then the unperturbed motion 8 = 3’ = 0 cannot be attractive (and hence asymp- 
totically stable) neither with respect to the angle 8, nor with respect to the angular ve- 
locity 8’. 

Let us consider the case when the function z (t) is unbounded ; in particular let us 
assume that 

I (t) = I” + ct= (0 < I,. c, a = const) (3.6) 
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we shall show that when 0 < a < 2 , the unperturbed motion 6 = 6’ = 0 is attractive 
with respect to the angle 0, i.e. all solutions of (3,l) defined on the interval It,, 00) 
tend to zero as t --f w. 

Assume that the solution 6 (1) is nonoscillatory. In this case it varies monotonously at 
sufficiently large values of t and tends toa finite limit v, since all solutions are bounded. 

Let us assume that v # 0, e.g. v > 0. Integrating Eq.(3.1) twice from a sufficiently 
large value T,, we obtain the estimate 

t 

0 (t) < 0 Vo) + 1 (To) 10’ (To) ) 1 (lo + CS=)-~ ds - cl sin v [ s’?ls + --M (f-too) 
T. T. 

which contradicts the fact that the function 6 (t) is bounded, and hence v = 0. 
Let us now assume that the solution 13 (t) oscillates, i. e. a sequence t, < t, < . . . < 

Ck < . . . exists for which 

e (tk) = 0 (k = 1, 2, . . .), lim,_mtk = 0 (3.7) 
Setting 

p (t) = (I, + cv, Q (t) = g (20 + 4 

we consider the following auxiliary Liapunov function (see [S]): 

W=W(t,0,0’) =dV+ 2 q 5 dp@.- 

where d = d (t) is a thrice continuously differentiable function on the interval IO, ~1. 

By virtue of (3. l), the derivative of W has the form 

~=~(~.)Z[(~+~)d’--d~l--Z((%)‘p)‘ea + (3.8) 

-cosCl) - +-e sin6 1 
Now I’ (1) > 0, therefore from (3.3) we see that 0 (r) = v (r, 6 (t), 8’ (c)) I 12 0 as 

t -9 00. 

It is sufficient to show that k = 0. Assume the opposite, i.e. that A > 0. Then for 
every e > 0 there exists T (e) such that 

1 =G v (4 < (f + s)A (1 > T (WI (3.8) 

Integrating (3.8) from T (e) to t,, (>, T (e)) and using (3.7). we obtain 

d($Jv(t,)<O(i)+ fkd+++--$+]+v&+ ’ 5 
Assume now that 6 (t) = t’, where 

+$)*p]]_@dt (3*10) 

(k-, m) 

6 = 8 (a) =1 
min (‘/z, 5a/n), O<a<2 

3, a=2 

Then 
p =: lim,, * = liml,, 

3acP 3a n 

6 (lo + CC”) = 8 >-r (3.11) 

To obtain the required contradiction from (3.10). we must estimate the integral 

z=z(t;a,+$ i[( ($f$)*b+c1.)2).]_ ds 

For 0 < a < 2 we have 
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1 
z (f; a,@ 6, 

Be [(a - 1 - a)@ + a - 2)l_ 
8t_a-2 (t S+a-2 - I) z2 () ($) (t - CC) (3.12) 

I (t; 2, 3) E 0 

Using the relations (3.9)-(3.12). we obtain the estimate 

Ati, = 0 (1) + [I - p -2” ’ 2 ]+ (I + E) us, + 0 (1;) (k--t~) 

Since the solution 9 (t) is bounded. When k -+ 00 , the above estimate yields the inequa- 
lity 

which, by virtue of (3. Il),contradicts the assumption that a > 0 is arbitrary, This proves 
that when 0 < a < 2 , all solutions 0 (t) tend to zero as t -+ W. 

Let US now consider the case when a > 2. Integrating Eq, (3.1) twice, we obtain the 
following estimate for the solution 8 ft) = 6 ft; t,, O,, 0) (6, > 0) : 

I s cc 

B (t) = eo - A-... 
s s t, P (4 

q (z) sin 8 (7) dz ds > 00 - c2 
s 

sr-a as (0 < c2 = const) 
t. tr 

From this it follows that for any 6, (0 < 1 tjo I< n/2) a to & 0 exists such that 

Iim in&, I Q fC 62, 80, 0) I > 0 (3.13) 

and this constitutes a proof of the following assertions: 
1) if the pendulum length satisfies the condition (3.4), then the unperturbed motion 

8 = 8’ = 0 is stable ; 
2) if the pendulum length l(1) is bounded and satisfies (3.4), then the unperturbed 

motion cannot be attractive (and hence ~ymptotically stable) with respect to the angle 

8, nor with respect to the angular velocity 6’; 
3) if the pendulum length varies according to the rule (3.6), then (a) for 0 < cc < 2 , 

the unperturbed motion is asymptotically stable with respect to 0 and all solutions 0 (t; 

t,, Bo, CA,*) of Eq.(3.1) defined on the interval [to, co) tend to zero as 1 -) 00, and (b) 
when CL > 2 for any 0, (0 < 1 0,, t < TE / 2) there exists t, > 0 such that the solution 

8 (t; t,, f&, 0) possesses the property (3.13). 
The author thanks V. V. Rumiantsev for supervising this work, 
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