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We use a generalization of the Liouville formula to state a necessary condition
under which the zero solution of a system of nonlinear differential equations has
no attraction property with respect to any of the variables, In particular, from

the basic theorem it follows that the stable unperturbed motion of a general (non-
stationary) Hamiltonian system cannot be attractive with respect to any of the
generalized coordinates and impulses, Properties of stability of the equilibrium
position of a mathematical pendulum of variable length are investigated as an
example,

1, Let the following system of differential equations of perturbed motion be given:

x=X( x) X 0=0) (L1
X=(1y, Z3 .- Za)*ER", | x|=(@+ 22+ ...+ 2,3

The vector function X (£, X) is defined and continuous together with its first order par-
tial derivativesin z, (i =1, 2, ..., n) ontheset I' = {(¢, x) : t > 0, | x| <
H} (0 << H < o) and the solutions x (¢; ,, X,) are defined for all ¢ > ¢, pro-
vided that the injtial values x, = X (t,; ¢, X¢) are sufficiently small in the norm,

Definition., The unperturbed motion x == 0 shall be called attractive with re-
spect to the variable z; (4 < j < n), if for every ¢, there exists § (t,) > O such
that | x, | < 6 implies limee 2 (5t xQ) =0 (1.2)
An unperturbed motion attractive with respect to all variables z,, Z3, ..., Z, shall
simply be called an attractive one,

Using the above terminology we can say that an unperturbed motion is asymptotically
Z;-stable [1] if it is x;-stable and attractive with respect to ;. Below we shall use the
following notation:

S ={&x:Ix]<r} O<reR)
z(t by F) ={x(t; t, xo) : xo &= F} (FCR"
2, The mapping § (r) - R" defined by the formula x, — x (¢; ,, X,) is, forany

fixed ¢, t, (0 < ¢, < ¢),a diffeomorphism the Jacobian of which satisfies the follow-
ing differential equation [2, 3]:

=T ot = 3 (2500 T (%53 ¢, to)

9= x=xX(1; lo, Xo)

i=1

when & 2> t,. This yields the relation
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3 n
J (Xo; £, to) = exp [S (Z‘_,l a_X:?_S.i’_x_))xzx(s; " dsj (2. 1)
L]
which represents a generalization of the Liouville formula for the systems of nonlinear
equations,
Theorem, Assume that a neighborhood of the coordinate origin exists such that all
solutions of the system (1, 1) originating in this neighborhood are uniformly bounded, i.e.
numbers [ > 0 and L >> 0 can be found such that

z(@ 0, SOHCTSE (>0 (2.2
If

t n .
lim SUp¢ e | min {; 2L x| < Lyds > — o0 2.9
0 =1

then the zero solution of the system (1. 1) has no attractive property with respect to any
of the variables z,, 3, . . ., Tn OF, more accurately, the Lebesgue measures p [E;]
of the sets
E;={xo:|x]|<I, limi..z;(t; 0, z) =0}
(i=1, 2, ..., n) are equal to zero,
Proof, By virtue of the condition (2. 3) and relation (2. 1) a sequence 0 < #; <

eo o 8 <{...andaconstant C exist such that ¢, — oo when k— oo and the
inequali
v iz 0, P ={... | do...doy= (2.4)
x(ty; 0, F)

(oo T 11 0) s . dzon S exp CIIF] (=120
F
holds for any open measurable set F (C S (I). The sets

1
HE ={xo:]|xo||<l, |2 (8 0, Xo) | < -~ 1pA m<t<m+1}
m, k=1,2,..))

are open for any fixed i (1 < i< n) (see [2]), therefore the set
E;= (U N Hn)
k=1 j=1m=j
is Lebesgue measurable,

Let us assume that the theorem is incorrect, i.e. that there exists j (1 <7 < n)
such that p [E;] >> 0. Then using a theorem due to D, F, Egorov [4] we can find a mea-
surable set E*  E; the measure of which satisfies the inequality W[E*]1 > u [E;l/ 2
and on which j (¢ 0, x,) — O uniformly in x, when t — 00 ,i.e. for anyg >0 ,
T (e) can be found such that £ > T (e) and X, & E* implies the inclusion

x (8 0, x)) E M (e) (2.5)
M@E =S8E Ny lylle}

Since &k — ©0 ,a natural number k (€) can be found such that %,y > T (e). Let
us introduce the notation F(e) =z (0; by M@E) S )
By virtue of (2,5) we have E* (C F (&), therefore W [F (e)] > u[E;1 /2. Using
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now (2, 4), we obtain the following estimate;

R M (e)] > p [z (te); O, F (e))] > (2.6)
exp [C1 p [F (e)] > exp [CIp [EjJ/2>0

On the other hand, we have the obvious relation
lime o1 p [M (e)] =0
which contradicts the estimate (2, 6) thus proving the theorem,

Corollary 1. If the zero solution of the system (1. 1) is stable and the inequality
(2. 3) holds for sufficiently small L >0, then the zero solution of (1. 1) has no attraction
property towards any of the variables z;; to express it more accurately, p [E;] =
0@E=1,2,..., m.

Now let the following arbitrary (nonconservative) Hamiltonian system be given

OH (t, q, p) . 8H (t, q, p)
and let us assume that the Hamiltonian function H (¢, q, p):[0, o) X R®X R"™> R
is continuous together with its second partial derivatives in ¢; and p;. Let the system
(2.7) have a solution ¢ = p == 0 which we shall call the position of equilibrium,

Corollary 2, If aneighborhood of the position of equilibrium q = p = ( ofthe
system (2. 7) exists in the 2n-dimensional space of the variables q, p such that all solu-
tions originating in this neighborhood are uniformly bounded,i.e. numbers I > 0 aand
L > 0 exist such that | qq |* -+ | po |* <C /® implies the inequality

la (% 0, g0, P)[* + [P (£ 0, qo, po) [ < L2 (2.8)

for all ¢ > O (in particular when this position of equilibrium q = p = () is stable),
then the position of equilibrium has no attraction property with respect to any of the va-
riables ¢;, p;, or more accurately, the Lebesgue measures of the sets

(g:) - {(q°' Po) = R : [ q, | +

(i='1,2,..., TL) (207)

Ipoff < 2, lim (Z‘) (t; 0, qo, Po) = 0}

(i =1, 2, ..., n) are all equal to zero,
Note. The equation 't az=0 (t>0, zER) (2.9)
shows that the condition (2, 8} in Corollary 2 is essential, Setting ¢ = z and p = 2°, we
can write (2, 9) in the form of the Hamiltonian system (2. 7) with the function H (2, ¢,
p) = (a(t) ¢*+ p*) / 2. The solution z = z' = 0 of (2. 9) cannot be attractive irrespec-
tive of what the function a (¢) is. On the other hand, the problem of the conditions un-~
der which all solutions of (2, 9) tend to zero as ¢— oo, or setting it differently, when the
solution z = z" = 0 of (2. 9) is attractive (in the whole) with respect to the coordinate
z ,has been a subject of study for a long time. A number of conditions guaranteeing this
property are known (see Sect, 5.5 of [5]). It follows that the rejection of the condition
(2. 8) invalidates Corollary 2,

3, As an example, we consider the motion of a pendulum consisting of a material
point suspended by a thread the length of which varies in accordance with an arbitrarily
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stated law I =1 () (1 (¢} > l, > 0). We denote by 0 the angle formed by the thread
with the vertical, In this case the Lagrange equation has the form

(B@O)+ gl(Hsind=0 (—n/2<0<na/2) 3.1
Consider the "normalized energy"
l
V=V (80,0) =—éﬁ(e')2+2(1—cose) 3.2
By virtue of Eq. (3. 1) we can write the following estimate for the derivative V"
3 3 (¢
v 0,0)= —— 1 () @F< [T 0] Ve,6 (3.3)
Assume that ©
L= 5 [(n L)) ]—dt < oo (3.4)
0

Then any one solution @ (f) of (3. 1) satisfies the inequality

v () = V(2 0(2), 8 (1) < v () exp [3L] (3.9)

Since (1 — cosB) /62 1/, as O 0, forany ¢ > 0 and ¢, > 0, there exist £ > 0 and
K (ty) such that

Vt6,0) >k (04 (93

V (t5, 0, 8) << K (8) (82 + (87)%)

t>0,060cR 0<|0|I<n/2~—0)
If €¢> 0and k
0% + (86 <® "Ry exp [BL]

then by virtue of (3. 5) we have the inequality
[8 (; 25y B0y 80712 4 [0° (25 50 0, 02 T 8 (2 = 1)

i,e. the condition (3, 4) entails the stability of the unperturbed motion ¢ = 8" = 0,

We note that the condition (3.4) obviously holds when the function ¢ () (I (t) 2> lo > 0)
increases or decreases, at sufficiently large values of ¢ If an unbounded sequence of the
time instances r; <s; < ... < ry < s <... issuch that the function () decreases
on the intervals [rp, ;] and increases on the intervals [sy, ry +1] k=1,2,...), then
the condition (3. 4) is equivalent to the inequality

(U (r/t (s,)) < o0
k=1

Let us find for what function [ (f) the unperturbed motion 8 = 0° = 0 is attractive
with respect to the angle 8. A simple computation shows that when the system is equi-
valent to (3. 1), the condition (2, 3) is equivalent to the inequality lim inf, , I () < oo.
Using Corollary 1 we find that if the function 7 (#) is bounded and satisfies the condition
(3. 4), then the unperturbed motion 6 = 6" = 0 cannot be attractive (and hence asymp-
totically stable) neither with respect to the angle 0, nor with respect to the angular ve-
locity 6.

Let us consider the case when the function 1 (¢) is unbounded; in particular let us

assume that L) =l + e (0< L. ¢ o= const) (3.9
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we shall show that when 0 < a < 2 , the unperturbed motion 8 = 6" == 0 is attractive
with respect to the angle 8, i,e. all solutions of (3. 1) defined on the interval [¢,, o)
tend to zero as ¢ — oo,

Assume that the solution 9 (¢) is nonoscillatory, In this case it varies monotonously at
sufficiently large values of ¢ and tends toa finite limit v, since all solutions are bounded.
Let us assume that y = 0, e.g. v > 0. Integrating Eq.(3. 1) twice from a sufficiently
large value T,, we obtain the estimate

¢ t
0(2) <O (To) -1 (To) |0 (To) | V (lo+ ¢s*)2ds —c; sinwv sv s17%ds — — oo (I — 00)

T, .
which contradicts the fact that the function 6 (¢) is bounded, and hence v = 0.
Let us now assume that the solution © (¢) oscillates,i.e, a sequence f; < t, < . . . <
t, < ... exists for which
B(t) =0 (k=1,2,..), lim _ _t,=0 (3.7
Setting

p()=(+ et  q(t)=g(lh+ e)
we consider the following auxiliary Liapunov function (see [6]):
. x 4 . b1 a’
W=wi(6,0) =dv+_2'TP99 — T(-—q—) po?

where d = d () is a thrice continuously differentiable function on the interval {0, 20),
By virtue of (3. 1), the derivative of W has the form

P EAYS (pq)']___“_ LA R Rt

wz—q—w[(wz)d—d 5 4((q)P)9 + 6.8

d [2(1 —cos0) F—’—;—e sin 9]
Now [I' (t) > 0, therefore from (3.3) we see that 2 (1) = V (£,0 (1,0 () \ A > 0 as
t — o0,

It is sufficient to show that A = 0. Assume the opposite,i.e. that A > 0. Then for

every e > 0 there exists T (e) such that
ASKv()S{E+ed (>T @) (3.9

Integrating (3, 8) from T (e) to i, (> T (e)) and using (3.7), we obtain

. ' (3. 10)
) x d (rqy k . .

tereg<ow+ ey -5 —f»q—]+”"‘+—?f‘z§ [((£) )] e
Assume now that § (1) = ¢*, where (k — 00)

6___6(&)_{min(‘/z, Sa/m), O0La<2

- 3, a=2

Then .

. d (pq) . 3act® 3a n

w= ]lml_m T () = llm{_’mm :_5_> 5 (3.11)

To obtain the required contradiction from (3, 10), we must estimate the integral

1 t 3s®1 \° ’
I=17(;a,98) ='E- S [((m) (lo 4 csa)z) ]_ ds

1
For 0 < a < 2 we have
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4 dcf{d—1— — 2)]-
I(f,; ®,6)<—g— CI( 6_*_&3'(?__;‘“ 2)} (55+a-2~—1}:0{t5) (t*—éco} (3. 12)

I(;2,3)=0
Using the relations (3, 9)—(3. 12), we obtain the estimate

—n/2
=0 +[1 - L] dportrod) (oo

since the solution 8 (i) is bounded. When k — oo , the above estimate yields the inequa-
1 1 7
” <[t (-2 v

which, by virtue of (3. 11),contradicts the assumption that & >> 0 is arbitrary, This proves
that when 0 < a < 2, all solutions © (¢) tend to zero as ¢ — oc.
Let us now consider the case when « 2> 2. Integrating Eq.(3. 1) twice, we obtain the

following estimate for the solution 6 (¢) = 0 (2; 14, 85, 0) (8 > 0):

4 8 ©

1
0 (t) = Bo—g—;—(-s-rg g (v)sin® (t)drds > 00— c2 S st% ds {0 < ¢ == const)
L] t. t.

From this it follows that for any 0, (0< |8, | < n/2) a ¢ => 0 exists such that

lim inf,__ |8 (¢ £, 69, 0) | > O (8.13)

and this constitutes a proof of the following assertions:

1) if the pendulum length satisfies the condition (3. 4), then the unperturbed motion
@ = 0" == 0 isstable;

2) if the pendulum length (¢} is bounded and satisfies (3. 4), then the unperturbed
motion cannot be attractive (and hence asymptotically stable) with respect to the angle
8, nor with respect to the angular velocity 67

3) if the pendulum length varies according to the rule (3, 6),then(a) for 0 < a < 2,
the unperturbed motion is asymptotically stable with respect to 8 and all solutions 0 (t;
tg, 89, 87 of Eq.(3. 1) defined on the interval [#, oo) tend to zero as t — oo, and (b)
when o > 2 for any 8, (0 <7 | 6, | < 7 /2) there exists ¢, > 0 such that the solution
8 (; ¢y, B,, 0) possesses the property (3. 13).

The author thanks V, V, Rumiantsev for supervising this work,
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